首页> 外文OA文献 >Linear Convergence of Adaptively Iterative Thresholding Algorithms for Compressed Sensing
【2h】

Linear Convergence of Adaptively Iterative Thresholding Algorithms for Compressed Sensing

机译:自适应迭代阈值算法的线性收敛性   压缩感知

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper studies the convergence of the adaptively iterative thresholding(AIT) algorithm for compressed sensing. We first introduce a generalizedrestricted isometry property (gRIP). Then we prove that the AIT algorithmconverges to the original sparse solution at a linear rate under a certain gRIPcondition in the noise free case. While in the noisy case, its convergence rateis also linear until attaining a certain error bound. Moreover, as by-products,we also provide some sufficient conditions for the convergence of the AITalgorithm based on the two well-known properties, i.e., the coherence propertyand the restricted isometry property (RIP), respectively. It should be pointedout that such two properties are special cases of gRIP. The solid improvementson the theoretical results are demonstrated and compared with the knownresults. Finally, we provide a series of simulations to verify the correctnessof the theoretical assertions as well as the effectiveness of the AITalgorithm.
机译:本文研究了压缩感知的自适应迭代阈值算法的收敛性。我们首先介绍广义受限等距特性(gRIP)。然后证明了在无噪声的情况下,在一定的gRIP条件下,AIT算法能够以线性速率收敛到原始的稀疏解。在嘈杂的情况下,其收敛速度也是线性的,直到达到一定的误差范围。此外,作为副产品,我们还基于两个众所周知的特性,即相干特性和受限等距特性(RIP),为AIT算法的收敛提供了一些充分的条件。应该指出的是,这两个属性是gRIP的特殊情况。对理论结果进行了扎实的改进,并与已知结果进行了比较。最后,我们提供了一系列模拟,以验证理论断言的正确性以及AIT算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号